Respiratory motion compensation by model-based catheter tracking during EP procedures
نویسندگان
چکیده
In many cases, radio-frequency catheter ablation of the pulmonary veins attached to the left atrium still involves fluoroscopic image guidance. Two-dimensional X-ray navigation may also take advantage of overlay images derived from static pre-operative 3D volumetric data to add anatomical details otherwise not visible under X-ray. Unfortunately, respiratory motion may impair the utility of static overlay images for catheter navigation. We developed a novel approach for image-based 3D motion estimation and compensation as a solution to this problem. It is based on 3D catheter tracking which, in turn, relies on 2D/3D registration. To this end, a bi-plane C-arm system is used to take X-ray images of a special circumferential mapping catheter from two directions. In the first step of the method, a 3D model of the device is reconstructed. Three-dimensional respiratory motion at the site of ablation is then estimated by tracking the reconstructed catheter model in 3D based on bi-plane fluoroscopy. Phantom data and clinical data were used to assess model-based catheter tracking. Our phantom experiments yielded an average 2D tracking error of 1.4mm and an average 3D tracking error of 1.1mm. Our evaluation of clinical data sets comprised 469 bi-plane fluoroscopy frames (938 monoplane fluoroscopy frames). We observed an average 2D tracking error of 1.0 + or - 0.4mm and an average 3D tracking error of 0.8 + or - 0.5mm. These results demonstrate that model-based motion-compensation based on 2D/3D registration is both feasible and accurate.
منابع مشابه
3-D Respiratory Motion Compensation during EP Procedures by Image-Based 3-D Lasso Catheter Model Generation and Tracking
Radio-frequency catheter ablation of the pulmonary veins attached to the left atrium is usually carried out under fluoroscopy guidance. Two-dimensional X-ray navigation may involve overlay images derived from a static pre-operative 3-D volumetric data set to add anatomical details. However, respiratory motion may impair the utility of static overlay images for catheter navigation. We developed ...
متن کاملModel-Based Registration for Motion Compensation during EP Ablation Procedures
Radio-frequency catheter ablation (RFCA) has become an accepted treatment option for atrial fibrillation (Afib). RFCA of Afib involves isolation of the pulmonary veins under X-ray guidance. For easier navigation, two-dimensional X-ray imaging may take advantage of overlay images derived from static pre-operative 3-D data set to add anatomical details which, otherwise, would not be visible under...
متن کاملConstrained 2-D/3-D Registration for Motion Compensation in AFib Ablation Procedures
Fluoroscopic overlay images rendered from pre-operative volumetric data can provide additional guidance for physicians during catheter ablation procedures for treatment of atrial fibrillation (AFib). As these overlay images are compromised by cardiac and respiratory motion, motion compensation methods have been proposed. The approaches so far either require simultaneous biplane imaging for 3-D ...
متن کاملIntra-cardiac MR imaging & MR-tracking catheter for improved MR-guided EP
Background Electrophysiology (EP) studies can diagnose & treat patients with arrhythmia. MR-guided EP is growing, driven by the ability of cardiac MRI to provide high-contrast images. For intra-procedural use, MRI provides images of the acute state of radio-frequency ablation (RFA) lesions, e.g. necrosis, edema and hemorrhage, that potentially reduce recurrences & complications [1,2]. Unfortuna...
متن کاملCombined Cardiac and Respiratory Motion Compensation for Atrial Fibrillation Ablation Procedures
Catheter ablation of atrial fibrillation has become an accepted treatment option if a patient no longer responds to or tolerates drug therapy. A main goal is the electrical isolation of the pulmonary veins attached to the left atrium. Catheter ablation may be performed under fluoroscopic image guidance. Due to the rather low soft-tissue contrast of X-ray imaging, the heart is not visible in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image analysis
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2010